(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(a, f(x, a)) → f(a, f(f(a, a), f(a, x)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(z0, a)) → f(a, f(f(a, a), f(a, z0)))
Tuples:
F(a, f(z0, a)) → c(F(a, f(f(a, a), f(a, z0))), F(f(a, a), f(a, z0)), F(a, a), F(a, z0))
S tuples:
F(a, f(z0, a)) → c(F(a, f(f(a, a), f(a, z0))), F(f(a, a), f(a, z0)), F(a, a), F(a, z0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
z0,
a)) →
c(
F(
a,
f(
f(
a,
a),
f(
a,
z0))),
F(
f(
a,
a),
f(
a,
z0)),
F(
a,
a),
F(
a,
z0)) by
F(a, f(f(z0, a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))), F(f(a, a), f(a, f(z0, a))), F(a, a), F(a, f(z0, a)))
F(a, f(x0, a)) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(z0, a)) → f(a, f(f(a, a), f(a, z0)))
Tuples:
F(a, f(f(z0, a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))), F(f(a, a), f(a, f(z0, a))), F(a, a), F(a, f(z0, a)))
F(a, f(x0, a)) → c
S tuples:
F(a, f(f(z0, a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))), F(f(a, a), f(a, f(z0, a))), F(a, a), F(a, f(z0, a)))
F(a, f(x0, a)) → c
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(a, f(x0, a)) → c
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(z0, a)) → f(a, f(f(a, a), f(a, z0)))
Tuples:
F(a, f(f(z0, a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))), F(f(a, a), f(a, f(z0, a))), F(a, a), F(a, f(z0, a)))
S tuples:
F(a, f(f(z0, a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))), F(f(a, a), f(a, f(z0, a))), F(a, a), F(a, f(z0, a)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
f(
z0,
a),
a)) →
c(
F(
a,
f(
f(
a,
a),
f(
a,
f(
f(
a,
a),
f(
a,
z0))))),
F(
f(
a,
a),
f(
a,
f(
z0,
a))),
F(
a,
a),
F(
a,
f(
z0,
a))) by
F(a, f(f(f(z0, a), a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))))), F(f(a, a), f(a, f(f(z0, a), a))), F(a, a), F(a, f(f(z0, a), a)))
F(a, f(f(x0, a), a)) → c(F(f(a, a), f(a, f(x0, a))))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(z0, a)) → f(a, f(f(a, a), f(a, z0)))
Tuples:
F(a, f(f(f(z0, a), a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))))), F(f(a, a), f(a, f(f(z0, a), a))), F(a, a), F(a, f(f(z0, a), a)))
F(a, f(f(x0, a), a)) → c(F(f(a, a), f(a, f(x0, a))))
S tuples:
F(a, f(f(f(z0, a), a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))))), F(f(a, a), f(a, f(f(z0, a), a))), F(a, a), F(a, f(f(z0, a), a)))
F(a, f(f(x0, a), a)) → c(F(f(a, a), f(a, f(x0, a))))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(a, f(f(x0, a), a)) → c(F(f(a, a), f(a, f(x0, a))))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(z0, a)) → f(a, f(f(a, a), f(a, z0)))
Tuples:
F(a, f(f(f(z0, a), a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))))), F(f(a, a), f(a, f(f(z0, a), a))), F(a, a), F(a, f(f(z0, a), a)))
S tuples:
F(a, f(f(f(z0, a), a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))))), F(f(a, a), f(a, f(f(z0, a), a))), F(a, a), F(a, f(f(z0, a), a)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(a, f(f(f(z0, a), a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))))), F(f(a, a), f(a, f(f(z0, a), a))), F(a, a), F(a, f(f(z0, a), a)))
We considered the (Usable) Rules:
f(a, f(z0, a)) → f(a, f(f(a, a), f(a, z0)))
And the Tuples:
F(a, f(f(f(z0, a), a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))))), F(f(a, a), f(a, f(f(z0, a), a))), F(a, a), F(a, f(f(z0, a), a)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [2]x2
POL(a) = 0
POL(c(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(f(x1, x2)) = [1] + [3]x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(z0, a)) → f(a, f(f(a, a), f(a, z0)))
Tuples:
F(a, f(f(f(z0, a), a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))))), F(f(a, a), f(a, f(f(z0, a), a))), F(a, a), F(a, f(f(z0, a), a)))
S tuples:none
K tuples:
F(a, f(f(f(z0, a), a), a)) → c(F(a, f(f(a, a), f(a, f(f(a, a), f(a, f(f(a, a), f(a, z0))))))), F(f(a, a), f(a, f(f(z0, a), a))), F(a, a), F(a, f(f(z0, a), a)))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(13) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(14) BOUNDS(O(1), O(1))